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The von Kármán–Howarth equations are derived for three-dimensional Hall magnetohydrodynamics in the
case of a homogeneous and isotropic turbulence. From these equations, we derive exact scaling laws for the
third-order correlation tensors. We show how these relations are compatible with previous heuristic and nu-
merical results. These multiscale laws provide a relevant tool to investigate the nonlinear nature of the high-
frequency magnetic field fluctuations in the solar wind or, more generally, in any plasma where the Hall effect
is important.
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Turbulence remains one of the last great unsolved prob-
lems in classical physics which has evaded physical under-
standing and systematic description for many decades. For
that reason, any exact results appear almost as a miracle. In
his third 1941 turbulence paper, Kolmogorov found that an
exact and nontrivial relation may be derived from Navier-
Stokes equations—which can be seen as the archetype equa-
tions for describing turbulence—for the third-order longitu-
dinal structure function �1�. Because of the rarity of such
results, Kolmogorov’s four-fifths law is considered as one of
the most important results in turbulence �2�.

The derivation of Kolmogorov’s law uses earlier exact
results found by von Kármán and Howarth in 1938 �3�: it is
the well-known von Kármán–Howarth �vKH� equation that
describes the dynamical evolution of the second-order corre-
lation tensors. Very few extensions of such results �vKH
equations and four-fifths law� to other fluids have been
made; it concerns scalar passively advected �4�, such as the
temperature or a pollutant in the atmosphere, and astrophysi-
cal magnetized fluid described in the framework of magne-
tohydrodynamics �MHD� �5,6�. The addition in the analysis
of the magnetic field and its coupling with the velocity field
renders the problem more difficult and, in practice, we are
dealing with a couple of equations.

Signatures of turbulence in astrophysical flows are found
in the solar wind �7�, the interstellar �8�, galactic, and even
intergalactic media �9�. In the case of the interplanetary me-
dium, we have access to very precise in situ measurements
which show, in particular, the existence of a steepening of
the magnetic field fluctuation spectrum at frequencies higher
than 1 Hz �10,11� whose origin may be attributed to nonlin-
ear Hall-MHD processes �12�. Efforts from observers are
currently made to show the presence of intermittency at high
frequency. In this quest, any theoretical or model predictions
about moderate or high-order correlation tensors is particu-
larly important for the understanding of solar wind and, more
generally speaking, astrophysical turbulence.

In this Rapid Communication, we derive the vKH equa-
tions for three-dimensional �3D� Hall-MHD fluids. From
these exact results, we give the equivalent of Kolmogorov’s
four-fifths law for the velocity, magnetic, and current density
field correlations.

We start our analysis with the 3D incompressible Hall
MHD equations

��t + v · ��v = − �P* + b · �b + ��v , �1�

��t + v · ��b = b · �v − dI � � ��� � b� � b� + ��b ,

�2�

with � ·v=0 and � ·b=0. The magnetic field b is normalized
to a velocity �b→��0nmib, with mi the ion mass and n the
electron density�, v is the plasma flow velocity, P* is the
total �magnetic plus kinetic� pressure, � is the viscosity, � is
the magnetic diffusivity, and dI is the ion inertial length �dI
=c /�pi, where c is the speed of light and �pi is the ion
plasma frequency�. Equations �1� and �2� may be rewritten
more compactly as

�tvi = − �iP* + b���bi − v���vi + ����
2 vi, �3�

�tbi = b���vi − v���bi + dI�J���bi − b���Ji� + ����
2 bi, �4�

where J=��b is the normalized current density. Note the
use of Einstein’s notation. We see immediately that the third-
order tensors that will appear in our analysis will be a com-
bination of the velocity, the magnetic field, and the current
density. This makes an important difference with Navier-
Stokes fluids for which the tensor used to derive the four-
fifths law is built with the same �velocity� field. As shown
below, it will have a direct impact on the kinematics.

Before deriving the vHK relations for Hall-MHD fluids,
one needs to introduce the kinematics adapted to this prob-
lem. The second-order correlation tensors, in the full isotro-
pic and homogeneous case, may be written as �13�

Rij
X�r� = �Xi�x�Xj�x��� = FXrirj + GX�ij , �5�

where x�=x+r and X=v or b. FX and GX are four arbitrary
functions of r2 which will be specified later. The divergence-
free condition �rj

Rij
X�r�=0 on the velocity and the magnetic

field leads to the relations

4FX + r�rF
X + r−1�rG

X = 0, �6�

which will be used later. We now introduce the longitudinal
and lateral functions as, respectively,

R��
X = X2fX�r� and R��

X = X2gX�r� . �7�

The reference direction is the vector separation r such that,
for example, the parallel component is the one along r. The
correlation functions fv,b and gv,b are mainly decreasing �see
�13� for more details about the function g� and satisfy the
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condition fv,b�0�=gv,b�0�=1. From relations �6� and �7�, we
obtain

Rij
X�r� = X2	 fX�ij + 
 r

2
�ij −

rirj

2r
��rf

X� . �8�

The third-order correlation tensors that will appear in our
derivation are �13�

Sijk
1 �r� = �vi�x�v j�x�vk�x���

= A1rirjrk + B1�ri� jk + rj�ik� + D1rk�ij , �9�

Sijk
2 �r� = �bi�x�bj�x�vk�x���

= A2rirjrk + B2�ri� jk + rj�ik� + D2rk�ij , �10�

Sijk
3 �r� = �vi�x�bj�x�bk�x���

= A3rirjrk + B3ri� jk + C3rj�ik + D3rk�ij , �11�

Sijk
4 �r� = �Ji�x�bj�x�bk�x���

= A4rirjrk + B4ri� jk + C4rj�ik + D4rk�ij , �12�

where Am, Bm, Cm, and Dm are arbitrary functions of r2. Note
that the last two tensors are not symmetric in the suffixes i
and j, which makes an important difference with Navier-
Stokes fluids where only the velocity field is used to build
the third-order correlation tensor. The direct consequence is
that we need not three but four arbitrary functions to define
these tensors initially. In the same way as before, we use the
continuity condition �rk

Sijk
m �r�=0 to constrain our system

�13�; it leads to the relations

r�rA1,2 + 5A1,2 + 2r−1�rB1,2 = 0, �13�

r�rD1,2 + 3D1,2 + 2B1,2 = 0, �14�

r�rA3,4 + 5A3,4 + r−1�rB3,4 + r−1�rC3,4 = 0, �15�

r�rD3,4 + 3D3,4 + B3,4 + C3,4 = 0. �16�

Additionally, we note that Siik
m �r�=0 whatever the value of m

is �since it is a solenoidal first-order isotropic tensor�; it gives
the relations

A1,2r2 + 2B1,2 + 3D1,2 = 0, �17�

A3,4r2 + B3,4 + C3,4 + 3D3,4 = 0. �18�

We introduce now the basic functions which include the par-
allel and perpendicular components of the fields. We have

S� � �
1,2 = A1,2r3 + �2B1,2 + D1,2�r = Y1,2K1,2�r� , �19�

S���
1,2 = D1,2r = Y1,2h1,2�r� , �20�

S���
1,2 = B1,2r = Y1,2q1,2�r� , �21�

S� � �
3,4 = A3,4r3 + �B3,4 + C3,4 + D3,4�r = Y3,4K3,4�r� , �22�

S���
3,4 = D3,4r = Y3,4h3,4�r� , �23�

S���
3,4 = B3,4r = Y3,4q3,4�r� , �24�

S���
3,4 = C3,4r = Y3,4s3,4�r� , �25�

where Km, hm, qm, and sm are odd scalar functions and Y1
=v3, Y2=Y3=vb2, and Y4=Jb2. Conditions �13�–�18� sim-
plify the expression of the third-order tensors, which write
finally as

Sijk
1,2�r� = Y1,2	
K1,2 − r�rK1,2

2r3 �rirjrk + 
2K1,2 + r�rK1,2

4r
�

��ri� jk + rj�ik� −
K1,2

2r
rk�ij� , �26�

Sijk
3,4�r� = Y3,4	
K3,4 − r�rK3,4

2r3 �rirjrk +
q3,4

r
ri� jk

+ 
K3,4 + r�rK3,4/2 − q3,4

r
�rj�ik −

K3,4

2r
rk�ij� .

�27�

The first main goal of this paper is the derivation of the
vKH equations for 3D Hall MHD fluids. We start with Eqs.
�3� and �4� and use previous relations derived from the kine-
matics to find

�tRij
v �r� = �vi�tv j�� + �v j��tvi�

= �vib�����bj�� − �viv�����v j�� − �vi� j�P��

+ �v j�b���bi� − �v j�v���vi� − �v j��iP�

+ ��vi��2
��v j�� + ��v j����

2 vi� , �28�

�tRij
b �r� = �bi�tbj�� + �bj��tbi�

= �bib�����v j�� − �biv�����bj�� + �bj�b���vi�

− �bj�v���bi� + dI��biJ�����bj�� − �bib�����Jj��

+ �bj�J���bi� − �bj�b���Ji�� + ��bi��2
��bj��

+ ��bj����
2 bi� . �29�

After simple manipulations where we use, in particular, the
divergence-free condition and the homogeneity assumption,
we get

�tRij
v = �r�

�Si�j
1 + Sj�i

1 − Si�j
2 − Sj�i

2 � + 2��r�r�

2 Rij
v , �30�

�tRij
b = �r�

�S�ji
3 − Sj�i

3 + S�ij
3 − Si�j

3 + dISj�i
4 − dIS�ji

4

+ dISi�j
4 − dIS�ij

4 � + 2��r�r�

2 Rij
b . �31�

Note that the pressure terms are suppressed because of isot-
ropy �13�. These general dynamical equations reduce to a
simple form for the diagonal part of the energy tensor,

�tRii
v = 2�r�

�Si�i
1 − Si�i

2 � + 2��r�r�

2 Rii
v , �32�

�tRii
b = 2�r�

„S�ii
3 − Si�i

3 + dI�Si�i
4 − S�ii

4 �… + 2��r�r�

2 Rii
b . �33�

It is the basic equations from which it will be possible to
derive the equivalent of the vKH relations. The introduction
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of Eqs. �26� and �27� into Eqs. �32� and �33� gives

�tRii
v = �r�


v3

r
r��4 + r�r�K1 −

vb2

r
r��4 + r�r�K2� + 2��r�r�

2 Rii
v ,

�34�

�tRii
b = �r�


−
4vb2

r
r��K3 + r�rK3/2 − 2q3�

+
4dIJb2

r
r��K4 + r�rK4/2 − 2q4�� + 2��r�r�

2 Rii
b .

�35�

By introducing

K̃m =
1

r4�r�r4Km�, K̃n =
Kn + r�rKn/2 − 2qn

r
, �36�

for m= �1,2� and n= �3,4�, we obtain

�t„�3 + r�r�fvv2
… = v3�r�

�r�K̃1� − vb2�r�
�r�K̃2�

+ 2��r�r�

2
„�3 + r�r�fvv2

… , �37�

�t„�3 + r�r�fbb2
… = 4dIJb2�r�

�r�K̃4� − 4vb2�r�
�r�K̃3�

+ 2��r�r�

2
„�3 + r�r�fbb2

… . �38�

By noting the identity �for isotropic turbulence� �r�r�

2 =�rr
2

+ �2 /r��r and the more subtle relation


�rr
2 +

2

r
�r��3 + r�r� = �3 + r�r�

1

r4�r�r4�r� , �39�

we finally obtain after some simple manipulations

�t„�3 + r�r�fvv2
… = v3�3 + r�r�K̃1 − vb2�3 + r�r�K̃2

+ 2��3 + r�r�
1

r4�r�r4�rf
vv2� , �40�

�t„�3 + r�r�fbb2
… = 4dIJb2�3 + r�r�K̃4 − 4vb2�3 + r�r�K̃3

+ 2��3 + r�r�
1

r4�r�r4�rf
bb2� . �41�

A first integral of these equations is

�t f
vv2 = v3K̃1 − vb2K̃2 +

2�

r4 �r�r4�rf
vv2� , �42�

�t f
bb2 = − 4vb2K̃3 + 4dIJb2K̃4 +

2�

r4 �r�r4�rf
bb2� . �43�

These exact equations are the vKH relations for 3D Hall
MHD. It is the first main result of this paper.

We shall derive now the equivalent of the four-fifths law
found by Kolmogorov for Navier-Stokes fluids �1�. We note
the relation R� �

X �r�= �X�
2�− 1

2B� �
X �r�, with the general form for

the structure function

Bij
X�r� = ��Xi�x�� − Xi�x���Xj�x�� − Xj�x��� , �44�

where X= �v ,b�. Introducing this relation into the vKH equa-
tions �42� and �43�, we get

�t�v�
2� −

1

2
�tB� �

v = v3K̃1 − vb2K̃2 +
2�

r4 �rr4�r
�v�
2� −

1

2
B� �

v �� ,

�45�

�t�b�
2� − 1

2�tB� �
b = 4dIJb2K̃4 − 4vb2K̃3

+
2�

r4 �rr4�r
�b�
2� −

1

2
B� �

b �� , �46�

and eventually

�t�v�
2� − �t

B� �
v

2
= v3K̃1 − vb2K̃2 −

�

r4�r�r4�rB� �
v � , �47�

�t�b�
2� − �t

B� �
b

2
= 4dIJb2K̃4 − 4vb2K̃3 −

�

r4�r�r4�rB� �
b � .

�48�

We define the mean �total� energy dissipation rate per unit
mass, 	T, for isotropic turbulence, as

�t�v�
2 + b�

2� = − �2/3�	T. �49�

Exact scaling laws for third-order correlation tensors may be
derived from the previous relations �47� and �48� by assum-
ing the following assumptions specific to fully developed
turbulence �2�. We first consider the long-time limit for
which a stationary state is reached with a finite 	T. Second,
we take the infinite �magnetic� Reynolds number limit
��→0 and �→0� for which the mean energy dissipation rate
per unit mass tends to a finite positive limit. Therefore, in the
inertial range, we obtain at first order the relation

− 1
6	Tr = v3�K1 + r�rK1/4� − vb2�K2 + r�rK2/4�

− vb2�K3 + r�rK3/2 − 2q3�

+ dIJb2�K4 + r�rK4/2 − 2q4� , �50�

which can also be written as

− 1
6	Tr = �S���

1 + 1
2S� � �

1 � − �S���
2 + 1

2S� � �
2 � + �S���

3 − S���
3 �

− dI�S���
4 − S���

4 � . �51�

The last step consists in introducing structure functions
which gives, after some manipulations, the final result

− 4
3	Tr = B�ii

vvv + B�ii
vbb − 2B�ii

bvb − 4dI�S�ii
4 − Si�i

4 �

= B�ii
vvv + B�ii

vbb − 2B�ii
bvb + 4dI���J � b� � b���� ,

�52�

with Bijk

��= ��
i�−
i��� j�−� j���k�−�k��.

Equations �42�, �43�, and �52� are the main results of this
paper. The former equations are exact for homogeneous and
isotropic turbulence, and the latter assumed additionally the
existence of a large inertial range on which the total energy
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flux is finite and constant. The most remarkable aspect of
these laws is that they not only provide a linear scaling for
the third-order correlation tensors within the inertial range of
length scales, but they also fix the value of the numerical
factor appearing in front of the scaling relations. Another
important remark is about the fields used to build the third-
order correlation tensors. Indeed, the convenient variables
are not only the velocity and magnetic field components but
also the current density components. Note that attempts to
find a simple expression in terms of only structure functions
failed, and therefore relations �52� seem to be the most ap-
propriate. A similar situation was found, for example, in
MHD flows when the magnetic helicity is included in the
analysis �6�.

The vKH equations �42� and �43� derived here in the
framework of Hall MHD are compatible with the one de-
rived by Chandrasekhar �5� for MHD when the large-scale
limit �dI→0� is taken. Note that some minor manipulations
have to be made in �5� to prove the compatibility since the
notations are not the same �for example, we have P

�vb2K̃3�. As explained above, the notation used here seems
to be more suitable for Hall MHD, which therefore requires
for a better understanding a complete rederivation of the dy-
namical equations. In the same way, when the large-scale
limit is taken, relation �52� is compatible with previous
works �6�, which are also compatible with Navier-Stokes flu-
ids when additionally the magnetic field is taken equal to
zero.

The exact results found here provide a better theoretical
understanding of Hall-MHD flows. They show that the scal-
ing relation does not change its power dependence in the

separation r at small scales if the statistical correlation tensor
used is modified. The interesting point to note is the compat-
ibility with previous heuristic and numerical results �14�. In-
deed, a simple dimensional analysis gives the relations r
�b3 for large scales and r2�b3 for small scales �since J
�b /r�, which give, respectively, the magnetic energy spectra
E�k−5/3 and E�k−7/3. Therefore and contrary to appear-
ances, the exact results found may provide a double-scaling
relation.

These multiscale laws provide a relevant tool to investi-
gate the nonlinear nature of the high-frequency magnetic
field fluctuations in the solar wind whose �dissipative versus
dispersive� origin is still controversial �12,15�. The use of
multipoint data may give information about both the mag-
netic field and the current density which can be used to check
the theoretical scaling relations. The observation of such a
scaling law would be an additional piece of evidence for the
presence of a dispersive inertial range and therefore for the
turbulent nature of the high-frequency magnetic field fluctua-
tions. The recent observation of the Yaglom MHD scaling
law �16� at low frequency provides direct evidence for the
presence of an inertial energy cascade in the solar wind. The
theoretical results given here allow us now to extend this
type of analysis to high-frequency magnetic field fluctuations
and, more generally speaking, to better understand the role of
the Hall effect in astrophysics, like, e.g., for the magnetoro-
tational instability in cool protostellar disks �17� or in labo-
ratory fusion plasmas. In such situations, isotropy is often
broken because of the presence of a strong large-scale mag-
netic field �see, e.g., �18�� and a generalization of the present
description to anisotropic turbulence is then necessary.
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